Ces3/TGH deficiency improves dyslipidemia and reduces atherosclerosis in Ldlr(-/-) mice.

نویسندگان

  • Jihong Lian
  • Ariel D Quiroga
  • Lena Li
  • Richard Lehner
چکیده

RATIONALE Carboxylesterase 3/triacylglycerol hydrolase (TGH) has been shown to participate in hepatic very low-density lipoprotein (VLDL) assembly. Deficiency of TGH in mice lowers plasma lipids and atherogenic lipoproteins without inducing hepatic steatosis. OBJECTIVE To investigate the contribution of TGH to atherosclerotic lesion development in mice that lack low-density lipoprotein receptor (LDLR). METHODS AND RESULTS Mice deficient in LDL receptor (Ldlr(-/-)) and mice lacking both TGH and LDLR (Tgh(-/-)/Ldlr(-/-)) were fed with a Western-type diet for 12 weeks. Analysis of Tgh(-/-)/Ldlr(-/-) plasma showed an atheroprotective lipoprotein profile with decreased cholesterol in the VLDL and the LDL fractions, concomitant with elevated high-density lipoprotein cholesterol. Significantly reduced plasma apolipoprotein B levels were also observed in Tgh(-/-)/Ldlr(-/-) mice. Consequently, Tgh(-/-)/Ldlr(-/-) mice presented with a significant reduction (54%, P<0.01) of the high-fat, high-cholesterol dieteninduced atherosclerotic plaques when compared with Tgh(+/+)/Ldlr(-/-) mice in the cross-sectional aortic root analysis. TGH deficiency did not further increase liver steatosis despite lowering plasma lipids, mainly due to reduced hepatic lipogenesis. The ameliorated dyslipidemia in Tgh(-/-)/Ldlr(-/-) mice was accompanied with significantly improved insulin sensitivity. CONCLUSIONS Inhibition of TGH activity ameliorates atherosclerosis development and improves insulin sensitivity in Ldlr(-/-) mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor-Induced Hyperlipidemia Contributes to Tumor Growth

The known link between obesity and cancer suggests an important interaction between the host lipid metabolism and tumorigenesis. Here, we used a syngeneic tumor graft model to demonstrate that tumor development influences the host lipid metabolism. BCR-Abl-transformed precursor B cell tumors induced hyperlipidemia by stimulating very low-density lipoprotein (VLDL) production and blunting VLDL a...

متن کامل

Myostatin deficiency and atherosclerosis Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice

Department of Molecular Medicine, Boston University School of Medicine. Boston, MA, 02118. Section of Endocrinology, Diabetes, & Nutrition, Department of Medicine, Boston Medical Center. Boston, MA, 02118. Department of Pediatrics, Washington University School of Medicine. St. Louis, MO, 63110. Division of Endocrinology & Metabolism, University of California, San Diego, San Diego, CA, 92093. De...

متن کامل

Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemia and confers protection against the development of atherosclerosis.

OBJECTIVE In dyslipidemic states, platelets become hyperreactive, secreting molecules that promote atherosclerosis. We have shown that the semaphorin family member, sema4D (CD100), is expressed on the surface of platelets and proposed that its role includes promoting thrombus growth by binding to nearby platelets and endothelial cells, both of which express sema4D receptors. Here we tested the ...

متن کامل

Integrative Physiology/Experimental Medicine Disruption of SEMA4D Ameliorates Platelet Hypersensitivity in Dyslipidemia and Confers Protection Against the Development of Atherosclerosis

Objective—In dyslipidemic states, platelets become hyperreactive, secreting molecules that promote atherosclerosis. We have shown that the semaphorin family member, sema4D (CD100), is expressed on the surface of platelets and proposed that its role includes promoting thrombus growth by binding to nearby platelets and endothelial cells, both of which express sema4D receptors. Here we tested the ...

متن کامل

An Interleukin-6 Receptor Antibody Suppresses Atherosclerosis in Atherogenic Mice

IκBNS is a nuclear IκB protein which negatively regulates nuclear factor-κB activity. We demonstrated that IκBNS deficiency accelerates atherosclerosis in LDL receptor-deficient (LDLr-/-) mice via increased interleukin (IL)-6 production by macrophages. Previous studies showed that the increase in IL-6 might contribute to the development of atherosclerotic lesions. However, whether an anti-mouse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 111 8  شماره 

صفحات  -

تاریخ انتشار 2012